1 Alternating Direction Method of Multipliers

This part is summarized from the article [Boyd et al., 2010].

1.1 Motivation

Algorithm 1: Dual Gradient Ascent

Consider

$$
\begin{aligned}
& \min _{\mathbf{x}} f(\mathbf{x}), \\
& \text { s.t. } A \mathbf{x}-\mathbf{b}=0 .
\end{aligned}
$$

Lagrangian: $L(\mathbf{x}, \boldsymbol{\nu})=f(\mathbf{x})+\boldsymbol{\nu}^{\top}(A \mathbf{x}-\mathbf{b})$. Thus,

$$
g(\boldsymbol{\nu})=\inf _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu})=L\left(\mathbf{x}^{*}(\boldsymbol{\nu}), \boldsymbol{\nu}\right) .
$$

The dual problem is

$$
\underset{\boldsymbol{\nu}}{\max } g(\boldsymbol{\nu}) .
$$

Because we have

$$
\nabla g(\boldsymbol{\nu})=\frac{\partial L}{\partial \mathbf{x}^{*}} \frac{\partial \mathbf{x}^{*}}{\partial \boldsymbol{\nu}}+\frac{\partial L}{\partial \boldsymbol{\nu}}=(A \mathbf{x}-\mathbf{b}),
$$

where $\frac{\partial L}{\partial \mathrm{x}^{*}}=0$. Based on that, the dual gradient assent algorithm is

$$
\begin{equation*}
\text { Step 1: } \mathbf{x}^{t}=\arg \min _{\mathbf{x}} L\left(\mathbf{x}, \boldsymbol{\nu}^{t}\right), \tag{1}
\end{equation*}
$$

Step 2: $\left.\boldsymbol{\nu}^{t+1}=\boldsymbol{\nu}^{t}+s_{t}\left(A \mathbf{x}^{t}-\mathbf{b}\right)\right)$.
The dual variable $\boldsymbol{\nu}$ can be interpreted as a vector of prices, and $\boldsymbol{\nu}$-update is called a "price update" step.

Algorithm 2: Dual Decomposition

The major benefit of the dual ascent method is that it can lead to a decentralized algorithm if f is separable. We consider

$$
\begin{aligned}
& \min _{\mathbf{x}} f(\mathbf{x})=\sum_{k=1}^{K} f_{k}\left(\mathbf{x}_{k}\right), \\
& \text { s.t. } A \mathbf{x}=\sum_{k=1}^{K} A_{k} \mathbf{x}_{k}=\mathbf{b},
\end{aligned}
$$

where $\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right)^{\top} \in \mathbb{R}^{n}, \mathbf{x}_{k} \in \mathbb{R}^{n_{k}}, \sum_{k=1}^{K} \mathbf{x}_{k}=n$.

For Lagrangian:

$$
\begin{aligned}
L(\mathbf{x}, \boldsymbol{\nu}) & =\sum_{k=1}^{K} f_{k}\left(\mathbf{x}_{k}\right)+\boldsymbol{\nu}^{\top}\left(\sum_{k=1}^{K} A_{k} \mathbf{x}_{k}-\mathbf{b}\right) \\
& =\sum_{k=1}^{K} \underbrace{\left\{f_{k}\left(\mathbf{x}_{k}\right)+\boldsymbol{\nu}^{\top}\left(A_{k} \mathbf{x}_{k}-\mathbf{b} / K\right)\right\}}_{:=L_{k}\left(\mathbf{x}_{k}, \boldsymbol{\nu}\right)}
\end{aligned}
$$

Algorithm:

$$
\left\{\begin{array}{l}
\mathbf{x}_{k}^{t+1}=\arg \min _{\mathbf{x}_{k}} L_{k}\left(\mathbf{x}_{k}, \boldsymbol{\nu}^{t}\right) \\
\boldsymbol{\nu}^{t+1}=\boldsymbol{\nu}^{t}+s_{t}\left(A \mathbf{x}^{t+1}-\mathbf{b}\right)
\end{array}\right.
$$

So, first we broadcast $\boldsymbol{\nu}^{t}$ to all threads. Then they compute each \mathbf{x}_{k}^{t+1}. Second, aggregate all \mathbf{x}_{k}^{t+1} to obtain \mathbf{x}^{t+1}.

Algorithm 3: Method of Multipliers.

Consider

$$
\begin{align*}
& \min _{\mathbf{x}} f(\mathbf{x}) \tag{3}\\
& \text { s.t. } A \mathbf{x}-\mathbf{b}=0 \tag{4}
\end{align*}
$$

This is equivalent to

$$
\begin{aligned}
& \min _{\mathbf{x}} f(\mathbf{x})+\frac{\rho}{2}\|A \mathbf{x}-\mathbf{b}\|^{2} \\
& \text { s.t. } A \mathbf{x}-\mathbf{b}=0
\end{aligned}
$$

The Lagrangian is called the augmented Lagrangian of (3). Denoted as

$$
L_{\rho}(\mathbf{x}, \boldsymbol{\nu})=f(\mathbf{x})+\frac{\rho}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}+\boldsymbol{\nu}^{\top}(A \mathbf{x}-\mathbf{b})
$$

Based on that, the dual gradient assent algorithm is

$$
\begin{align*}
& \text { Step 1: } \mathbf{x}^{t+1}=\arg \min _{\mathbf{x}} L_{\rho}\left(\mathbf{x}, \boldsymbol{\nu}^{t}\right) \tag{5}\\
& \text { Step 2: } \boldsymbol{\nu}^{t+1}=\boldsymbol{\nu}^{t}+\rho\left(A \mathbf{x}^{t+1}-\mathbf{b}\right) \tag{6}
\end{align*}
$$

Remark 1 - x-update adopts L_{ρ} is not L.

- Step size is ρ is not s_{t}.
- This is called "method of multiplers" (MM).

Lemma 1 Suppose that \mathbf{x}^{t+1} is generated from MM via $\boldsymbol{\nu}^{t}$, then show that \mathbf{x}^{t+1} is the stationary point of $L\left(\mathrm{x}, \boldsymbol{\nu}^{t+1}\right)$.

Proof 1 We know that \mathbf{x}^{t+1} minimizes $L_{\rho}\left(\mathbf{x}, \boldsymbol{\nu}^{t}\right)$, then

$$
\begin{aligned}
\nabla_{\mathbf{x}} L_{\rho}\left(\mathbf{x}^{t+1}, \boldsymbol{\nu}^{t}\right) & =\nabla f\left(\mathbf{x}^{t+1}\right)+A^{\top} \boldsymbol{\nu}^{t}+\rho A^{\top}\left(A \mathbf{x}^{t+1}-\mathbf{b}\right) \\
& =\nabla f\left(\mathbf{x}^{t+1}\right)+A^{\top}\left(\boldsymbol{\nu}^{t}+\rho\left(A \mathbf{x}^{t+1}-\mathbf{b}\right)\right) \\
& =\nabla f\left(\mathbf{x}^{t+1}\right)+A^{\top} \boldsymbol{\nu}^{t+1}=\nabla L\left(\mathbf{x}^{t+1}, \boldsymbol{\nu}^{t+1}\right)=0
\end{aligned}
$$

Q: When f is separable, then augmented Lagrangian L_{ρ} is not separable. So that \mathbf{x}-minimization step cannot be carried out separately in parallel for each \mathbf{x}_{i}. How to address this issue?

1.2 ADMM

Let us consider the following convex optimization problem:

$$
\begin{align*}
& \min _{\mathbf{x}, \mathbf{z}} f(\mathbf{x})+g(\mathbf{z}) \tag{7}\\
& \text { s.t. } A \mathbf{x}+B \mathbf{z}=\mathbf{c}, \tag{8}
\end{align*}
$$

where $\mathbf{x} \in \mathbb{R}^{n_{1}}, \mathbf{z} \in \mathbb{R}^{n_{2}}, n_{1}+n_{2}=n, A \in \mathbb{R}^{m \times n_{1}}$ and $B \in \mathbb{R}^{m \times n_{2}}$. Further assume that f and g are convex.
The only difference form the general linear equality constrained problem is that the variables \mathbf{x}, \mathbf{z} can be viewed splitted variable form a big one.

Example 1

$$
\min _{\mathbf{x}} f_{1}(\mathbf{x})+f_{2}(\mathbf{x})
$$

This is equivalent to

$$
\begin{aligned}
& \min _{\mathbf{x}, \mathbf{z}} f_{1}(\mathbf{x})+f_{2}(\mathbf{z}) \\
& \text { s.t. } \mathbf{x}-\mathbf{z}=0
\end{aligned}
$$

Example 2

$$
\min _{\mathbf{x}} f_{1}(\mathbf{x})+f_{2}(A \mathbf{x}) .
$$

This is equivalent to

$$
\begin{aligned}
& \min _{\mathbf{x}, \mathbf{z}} f_{1}(\mathbf{x})+f_{2}(\mathbf{z}) \\
& \text { s.t. } A \mathbf{x}-\mathbf{z}=0
\end{aligned}
$$

Example 3

$$
\begin{array}{rl}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } \mathbf{x} \in \mathcal{X}
\end{array}
$$

This is equivalent to

$$
\begin{aligned}
& \min _{\mathbf{x}, \mathbf{z}} f(\mathbf{x})+\delta_{\mathcal{X}}(\mathbf{z}) \\
& \text { s.t. } \mathbf{x}-\mathbf{z}=0
\end{aligned}
$$

Example 4 Global consensus problem is

$$
\min _{\mathbf{x}} \sum_{j=1}^{J} f_{j}(\mathbf{x})
$$

This is equivalent to

$$
\begin{aligned}
& \min _{\mathbf{x}_{i}, \mathbf{x}} \sum_{j=1}^{J} f_{j}\left(\mathbf{x}_{j}\right) \\
& \text { s.t. } \mathbf{x}_{j}-\mathbf{x}=0
\end{aligned}
$$

Actually, the problem (7) can be solved by MM. Its augmented Lagrangian is

$$
\begin{aligned}
L_{\rho}(\mathbf{x}, \mathbf{z}, \boldsymbol{\nu})= & f(\mathbf{x})+g(\mathbf{z})+\boldsymbol{\nu}^{\top}(A \mathbf{x}+B \mathbf{z}-\mathbf{c})+\frac{\rho}{2}\|A \mathbf{x}+B \mathbf{z}-\mathbf{c}\|^{2} \\
& \left\{\begin{array}{l}
\left(\mathbf{x}^{t+1}, \mathbf{z}^{t+1}\right)=\arg \min _{\mathbf{x}, \mathbf{z}} L_{\rho}\left(\mathbf{x}, \mathbf{z}, \boldsymbol{\nu}^{t}\right) \\
\boldsymbol{\nu}^{t+1}=\boldsymbol{\nu}^{t}+\rho\left(A \mathbf{x}^{t+1}+b \mathbf{z}^{t+1}-\mathbf{c}\right)
\end{array}\right.
\end{aligned}
$$

This formulation cannot be decomposed.
So, the ADMM algorithm is

$$
\left\{\begin{array}{l}
\mathbf{x}^{t+1}=\arg \min _{\mathbf{x}} L_{\rho}\left(\mathbf{x}, \mathbf{z}^{t}, \boldsymbol{\nu}^{t}\right) \\
\mathbf{z}^{t+1}=\arg \min _{\mathbf{z}} L_{\rho}\left(\mathbf{x}^{t+1}, \mathbf{z}, \boldsymbol{\nu}^{t}\right) \\
\boldsymbol{\nu}^{t+1}=\boldsymbol{\nu}^{t}+\rho\left(A \mathbf{x}^{t+1}+b \mathbf{z}^{t+1}-\mathbf{c}\right)
\end{array}\right.
$$

This is called "unscaled form". The corresponding "scaled form" is

$$
\boldsymbol{\nu}^{\top}(A \mathbf{x}+B \mathbf{z}-\mathbf{c})+\frac{\rho}{2}\|A \mathbf{x}+B \mathbf{z}-\mathbf{c}\|^{2}=\frac{\rho}{2}\|A \mathbf{x}+B \mathbf{z}-\mathbf{c}+\boldsymbol{\nu} / \rho\|^{2}-\frac{\rho}{2}\|\boldsymbol{\nu} / \rho\|^{2}
$$

Let $\mathbf{u}=\boldsymbol{\nu} / \rho$, then the so-called scaled form of ADMM is

$$
\left\{\begin{array}{l}
\mathbf{x}^{t+1}=\arg \min _{\mathbf{x}}\left(f(\mathbf{x})+\frac{\rho}{2}\left\|A \mathbf{x}+B \mathbf{z}^{t}-\mathbf{c}+\mathbf{u}^{t}\right\|^{2}\right) \\
\mathbf{z}^{t+1}=\arg \min _{\mathbf{z}}\left(g(\mathbf{z})+\frac{\rho}{2}\left\|A \mathbf{x}^{t+1}+B \mathbf{z}-\mathbf{c}+\mathbf{u}^{t}\right\|^{2}\right) \\
\mathbf{u}^{t+1}=\mathbf{u}^{t}+A \mathbf{x}^{t+1}+B \mathbf{z}^{t+1}-\mathbf{c}
\end{array}\right.
$$

Example 5 (LAD Regression)

$$
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{1}
$$

This is equivalent to

$$
\begin{aligned}
& \min _{\mathbf{x}, \mathbf{z}}\|\mathbf{z}\|_{1} \\
& \text { s.t. } A \mathbf{x}-\mathbf{z}=\mathbf{b}
\end{aligned}
$$

Based on ADMM algorithm, it has

$$
\begin{gathered}
\mathbf{x}^{t+1}=\arg \min _{\mathbf{x}} \frac{\rho}{2}\left\|A \mathbf{x}-\mathbf{z}^{t}-\mathbf{b}+\mathbf{u}^{t}\right\|^{2} \\
=\left(A^{\top} A\right)^{-1} A^{\top}\left(\mathbf{z}^{t}+\mathbf{b}-\mathbf{u}^{t}\right) \\
\mathbf{z}^{t+1}=\arg \min _{\mathbf{z}}\left\{\|\mathbf{z}\|_{1}+\frac{\rho}{2}\left\|A \mathbf{x}^{t+1}-\mathbf{z}-\mathbf{b}+\mathbf{u}^{t}\right\|^{2}\right\} \\
=S_{1 / \rho}\left(A \mathbf{x}^{t+1}-\mathbf{b}+\mathbf{u}^{t}\right)
\end{gathered}
$$

where $S_{1 / \rho}$ is the soft thresholding function. For \mathbf{u}^{t+1},

$$
\mathbf{u}^{t+1}=\mathbf{u}^{t}+A \mathbf{x}^{t+1}-\mathbf{z}^{t+1}-\mathbf{c}
$$

Example 6 (LASSO)

$$
\min _{\mathbf{x}} \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}+\lambda\|\mathbf{x}\|_{1}
$$

This is equivalent to

$$
\begin{aligned}
& \min _{\mathbf{x}, \mathbf{z}} \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}+\lambda\|\mathbf{z}\|_{1} \\
& \text { s.t. } \mathbf{x}-\mathbf{z}=0
\end{aligned}
$$

Based on ADMM algorithm, it has

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}+\frac{\rho}{2}\left\|\mathbf{x}-\mathbf{z}^{t}+\mathbf{u}^{t}\right\|^{2}\right\} \\
& =\left(A^{\top} A+\rho I\right)^{-1}\left(A^{\top} \mathbf{b}+\rho\left(\mathbf{z}^{t}-\mathbf{u}^{t}\right)\right) \\
\mathbf{z}^{t+1} & =\arg \min _{\mathbf{z}}\left\{\lambda\|\mathbf{z}\|_{1}+\frac{\rho}{2}\left\|\mathbf{x}^{t+1}-\mathbf{z}-\mathbf{b}+\mathbf{u}^{t}\right\|^{2}\right\} \\
& =S_{\lambda / \rho}\left(\mathbf{x}^{t+1}+\mathbf{u}^{t}\right)
\end{aligned}
$$

where $S_{\lambda / \rho}$ is the soft thresholding function. For \mathbf{u}^{t+1},

$$
\mathbf{u}^{t+1}=\mathbf{u}^{t}+\mathbf{x}^{t+1}-\mathbf{z}^{t+1}
$$

Example 7

$$
\begin{aligned}
& \min _{\mathbf{x}} f(\mathbf{x}) \\
& \text { s.t. } \mathbf{x} \in \mathcal{X}
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
& \min _{\mathbf{x}, \mathbf{z}} f(\mathbf{x})+\delta_{\mathcal{X}}(\mathbf{z}) \\
& \text { s.t. } \mathbf{x}-\mathbf{z}=0
\end{aligned}
$$

Based on ADMM algorithm, it has

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\arg \min _{\mathbf{x}}\left\{f(\mathbf{x})+\frac{\rho}{2}\left\|\mathbf{x}-\mathbf{z}^{t}+\mathbf{u}^{t}\right\|^{2}\right\} \\
& =\operatorname{prox}_{\rho f}\left(\mathbf{z}^{t}-\mathbf{u}^{t}\right) \\
\mathbf{z}^{t+1}= & \arg \min _{\mathbf{z}}\left\{\delta_{\mathcal{X}}(\mathbf{z})+\frac{\rho}{2}\left\|\mathbf{x}^{t+1}-\mathbf{z}+\mathbf{u}^{t}\right\|^{2}\right\} \\
= & \pi_{\mathcal{X}}\left(\mathbf{x}^{t+1}+\mathbf{u}^{t}\right)
\end{aligned}
$$

where $\pi_{\mathcal{X}}$ is the projection function. For \mathbf{u}^{t+1},

$$
\mathbf{u}^{t+1}=\mathbf{u}^{t}+\mathbf{x}^{t+1}-\mathbf{z}^{t+1}
$$

- Non-negative Least Squares: $f(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}, \mathcal{X}=\{\mathbf{x} \mid \mathbf{x} \succeq 0\}$.
- Ridge: $f(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}, \mathcal{X}=\{\mathbf{x} \mid\|\mathbf{x}\| \leq t\}$.
- Basis Pursuit: $f(\mathbf{x})=\|\mathbf{x}\|_{1}, \mathbf{X}=\{\mathbf{x} \mid A \mathbf{x}=\mathbf{b}\}$. Then

$$
\left\{\begin{array}{l}
\mathbf{x}^{t+1}=S_{1 / \rho}\left(\mathbf{z}^{t}-\mathbf{u}^{t}\right) \\
\mathbf{z}^{t+1}=\pi_{\mathcal{X}}\left(\mathbf{x}^{t+1}+\mathbf{u}^{t}\right)=\left(I-A\left(A A^{\top}\right)^{-1} A\right)\left(\mathbf{x}^{t+1}+\mathbf{u}^{t}\right)+A^{\top}\left(A A^{\top}\right)^{-1} \mathbf{b}
\end{array}\right.
$$

1.3 Optimality Conditions of ADMM

For the convex optimization problem (7), and strong duality holds, we have the necessary and sufficient optimality conditions for it as

$$
\begin{align*}
& \nabla f\left(\mathbf{x}^{*}\right)+A^{\top} \boldsymbol{\nu}^{*}=0 \tag{9}\\
& \nabla g\left(\mathbf{z}^{*}\right)+A^{\top} \boldsymbol{\nu}^{*}=0 \tag{10}\\
& A \mathbf{x}^{*}+B \mathbf{z}^{*}-\mathbf{c}=0 \tag{11}
\end{align*}
$$

For (10), we know that \mathbf{z}^{t+1} minimizes $L_{\rho}\left(\mathbf{x}^{t+1}, \mathbf{z}, \boldsymbol{\nu}^{t}\right)$, then

$$
\begin{aligned}
0 & =\nabla g\left(\mathbf{z}^{t+1}\right)+B^{\top} \boldsymbol{\nu}^{t}+\rho B^{\top}\left(A \mathbf{x}^{t+1}+B \mathbf{z}^{t+1}-\mathbf{c}\right) \\
& =\nabla g\left(\mathbf{z}^{t+1}\right)+B^{\top}\left(\boldsymbol{\nu}^{t}+\rho\left(A \mathbf{x}^{t+1}+B \mathbf{z}^{t+1}-\mathbf{c}\right)\right) \\
& =\nabla g\left(\mathbf{z}^{t+1}\right)+B^{\top} \boldsymbol{\nu}^{t+1}
\end{aligned}
$$

So, $\left(\mathbf{z}^{t+1}, \boldsymbol{\nu}^{t+1}\right)$ satisfies (10) in the KKT conditions.
For (9), we know that \mathbf{x}^{t+1} minimizes $L_{\rho}\left(\mathbf{x}, \mathbf{z}^{t}, \boldsymbol{\nu}^{t}\right)$, then

$$
\begin{aligned}
0 & =\nabla f\left(\mathbf{x}^{t+1}\right)+A^{\top} \boldsymbol{\nu}^{t}+\rho A^{\top}\left(A \mathbf{x}^{t+1}+B \mathbf{z}^{t}-\mathbf{c}\right) \\
& =\nabla f\left(\mathbf{x}^{t+1}\right)+A^{\top}\left(\boldsymbol{\nu}^{t}+\rho\left(A \mathbf{x}^{t+1}+B \mathbf{z}^{t+1}-\mathbf{c}\right)\right)+\rho A^{\top} B\left(\mathbf{z}^{t}-\mathbf{z}^{t+1}\right) \\
& =\nabla f\left(\mathbf{x}^{t+1}\right)+A^{\top} \boldsymbol{\nu}^{t+1}+\rho A^{\top} B\left(\mathbf{z}^{t}-\mathbf{z}^{t+1}\right)
\end{aligned}
$$

Thus,

$$
S^{t+1}:=\rho A^{\top} B\left(\mathbf{z}^{t+1}-\mathbf{z}^{t}\right)=\nabla f\left(\mathbf{x}^{t+1}\right)+A^{\top} \boldsymbol{\nu}^{t+1}
$$

this is called "dual residual". Furthermore, define

$$
R^{t+1}=A \mathbf{x}^{t+1}+B \mathbf{z}^{t}-\mathbf{c}
$$

as "primal residual".
The stopping conditions of ADMM should be

$$
\begin{equation*}
\left\|S^{t+1}\right\| \leq \epsilon,\left\|R^{t+1}\right\| \leq \epsilon \tag{12}
\end{equation*}
$$

When $\epsilon \rightarrow 0$, then KKT conditions are satisfied.

References

[Boyd et al., 2010] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2010). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1-122.

